

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE: Electrical Engineering	SEMESTER: 5thSem	NAME OF THE TEACHING FACULTY Parida	Y: ER.C	hittaranjan
SUBJECT:	No of Days/	Semester From Date:15/09/2022		
DIGITAL ELECTRONICS & MICROPROCESSOR	Per week class allotted:	To Date:22/12/2022		
	5 Class P/W	No. Of Weeks: 15		
WEEK	CLASS DAY	THEORY TOPICS	RI	EMARKS
	1 st	Binary, Octal, Hexadecimal number systems and compare	Date	Dean/Principal
1 st	2 nd	Binary addition, subtraction, Multiplication and Division		
	3 rd	1's complement and 2's complement numbers for a binary number , Subtraction of binary numbers in 2's complement method.		
	4 th	Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and viceversa.		
	5 th	Doubt Clear Class		
2 nd	1 st	Importance of parity Bit		
	2 nd	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.		
	3 rd	Realize AND, OR, NOT operations using NAND, NOR gates.		
	4 th	Different postulates and De- Morgan's theorems in Boolean algebra		
	5 th	Use Of Boolean Algebra For Simplification Of Logic Expression		
₽īd	1 st	Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.		
	2 nd	Give the concept of combinational logic circuits, Half adder circuit and verify its functionality using truth table.		

J 5 [
	$3^{ m rd}$	Deeline a Helf adden vaina NAND	
	3	Realize a Half-adder using NAND	
		gates only and NOR gates only	
	$4^{ m th}$	Full adder circuit and explain its	
		operation with truth table. Realize full-adder using two Half-	
	th		
	5 th	adders and an OR – gate and write	
		truth table	
	1^{st}		
	-	Full subtractor circuit and explain	
		its operation with truth table	
	$2^{ m nd}$	Operation of 4 V 1 Multipleyers	
$4^{ m th}$	-	Operation of 4 X 1 Multiplexers	
		and 1 X 4 demultiplexer	
	$3^{ m rd}$	Working of Binary-Decimal	
		Encoder & 3 X 8 Decoder.	
	$4^{ m th}$	Working of Two bit magnitude	
	·	comparator.	
	5 th	Give the idea of Sequential logic	
		circuits	
		State the necessity of clock and	
	1^{st}	give the concept of level clocking	
		and edge triggering,	
	2 nd	Clocked SR flip flop with preset	
	2	and clear inputs	
		Construct level clocked JK flip flop	
5 th	$3^{ m rd}$	using S-R flip-flop and explain with	
3		truth table	
		Concept of race around condition	
	$4^{ ext{th}}$	and study of master slave JK flip	
		flop.	
		Give the truth tables of edge	
	5 th	triggered D and T flip flops and	
		draw their symbols.	
	1^{st}	Applications of flip flops.	
 	2^{nd}		
6 th	<u>Z</u>	Define modulus of a counter	
	$3^{ m rd}$	4-bit asynchronous counter and its	
	, sk	timing diagram	
	4 th	Assignment	
	a		
	5 th		
		Asynchronous decade counter.	
7 th	1^{st}	4-bit synchronous counter.	
	2^{nd}	Distinguish between synchronous	
		and asynchronous counters. ,	
		State the need for a Register and	
		list the four types of registers	
		Working of SISO, SIPO, PISO, PIPO	
	3^{rd}	Register with truth table using flip	
		flop.	
ŀ		luok.	
	$4^{\rm th}$	Introduction to Microprocessors,	
	4	Microcomputers	
L		iviici ocomputers	

		Architecture of Intel 8085A	
	a.	Microprocessor and description of	
5 th	5	each block.	
	1 st		
		Pin diagram and description.	
	2 nd	Stack, Stack pointer & stack top	
	3 rd	Interrupts	
8 th	4^{th}	Opcode & Operand	
8			
	al.	Differentiate between one byte,	
	5 th	two byte & three byte instruction	
		with example., Instruction set of 8085 example	
	. at		
	1 st	Revision of last classes	
	2 nd	Assignment question Discussion	
	-1		
9 th	$3^{ m rd}$	Addressing mode	
9		Fetch Cycle, Machine Cycle,	
	$4^{\rm th}$	Instruction Cycle, T-State	
	5 th	Timing Diagram for memory read,	
		memory write, I/O read, I/O write	
	1^{st}	Class Test	
	2^{nd}	Internal Question Discussion	
10 th	3^{rd}	Doubt Clear Class	
	4 th	Doubt Clear Class	
	d.		
	5 th	Timing Diagram for 8085	
		instruction	
	1^{st}	Timing Diagram for 8085	
		instruction	
	2 nd	Revision	
11 th	$3^{ m rd}$	Counter and time delay	
11	4 th	Simple assembly language	
		programming of 8085.	
	th.	Simple assembly language	
	5 th	programming of 8085.	
	1 st	Assignment	
	2 nd	Assignment question Discussion	
	3 rd	Class Test	
12 th	4 th	Sample Paper Important Question	
12		Discussion	
	5 th	Basic Interfacing Concepts,	
		Memory mapping & I/O mapping	
	1 st	Revision of last class	
	$2^{ m nd}$	Timing Diagram for 8085	
	· j		

13 th	3 rd	Assignment
	4 th	Counter and time delay.
	5 th	Assignment question Discussion
	1 st	Simple assembly language programming of 8085.
	2 nd	Simple assembly language programming of 8085.
14 th	3 rd	Basic Interfacing Concepts, Memory mapping & I/O mapping
	4 th	Functional block diagram and description of each block of Programmable peripheral interface Intel 8255 ,
	5 th	Class Test
	1 st	Class Test
	2 nd	Revision
15 th	3 rd	Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	4 th	Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	5 th	Important questions will be discussed for the semester Exam.

Chittareijan Perida

Chittarayan Perida

(D)

HOD DEAN PRINCIPAL